We have rights to a new patent - and it’s a big deal, see why

Our New Distributed Water System Patent Will Be A Pillar Of AquiPor Technologies

Water loves to flow, clean water, polluted water, it has to go somewhere. Unfortunately, too much polluted water is ending up in our waterways. We can however, give gravity and nature a helping hand by being good stewards of our wastewater.  Which is why here at AquiPor we’re really excited to announce our latest patent for a distributed water system. 

This is a big idea, and it takes a little bit to really flush out all the details, so we’ll start here with highest level overview, and as we move forward we’re going to break this down deeper as we go. 

This is going to sound almost ridiculous how basic the idea sounds - sewer pipes live everywhere, you’re probably only a few yards from some sewer pipe going to the street, then going to treatment plant, or worse yet, going to your community's waterways! 

These pipes by design have a much larger diameter than they would almost ever need to run this water to its destination, and this is primarily for air flow purposes.  So our technology group patented an idea - let’s run small hoses that use less than 5% of the area of the pipe that can flow back and forth from the water treatment plant (or wherever we want really) and control, maintain and properly distribute water more efficiently.

So say instead of just cleaning water and dumping it back into your local river, we can run that water back up towards the aquifer and allow it return to nature there? Thus avoiding flooding in rain events, controling water means a level of efficiency that can help cities save millions of dollars and gallons of water, both of which you want to use for your community. 

This is the fundamental idea of our new patent. If you’re as excited about this, understand technical literature, or have some time on your hand, you can read the patent here: 

Next time we’ll connect current AquiPor tech with this new tech and explain how they work symbiotically, and how our green concrete is just the tip of the engineering spear of AquiPor! 

At Aquipor’s live webinar and Q&A our CEO Greg Johnson and product engineer Josh Chastek went over what Aquipor has accomplished in the last year and what Aquipor’s goals are for 2024. They go over a lot of great info throughout the stream, give it a listen!

While so-called climate experts wring their hands about fossil fuel vs. EV powered vehicles, it turns out that the biggest climate threat from vehicles comes from their tires. 

According to a recent report, 78% percent of the microplastics in oceans come from synthetic tire rubber, all by way of stormwater runoff. Those microplastics end up in marine life, and ultimately end up in the seafood that humans consume. 

Tire rubber contains more than 400 chemicals and compounds, many of them carcinogenic, and research is only beginning to show how widespread the problems from tire dust may be.

“Tire wear particles” are emitted continually as vehicles travel and they range in size from visible pieces of rubber or plastic to microparticles. It is estimated that tires generate 6 million tons of particles a year,  of which 200,000 tons end up in oceans. 

The silver lining is that scientists studying the pollutants in stormwater runoff have found that green infrastructure solutions such as rain gardens could prevent more than 90 percent of tire particulates from entering our waterways.

AquiPor’s technology is being developed to accomplish the same thing, but at a much larger scale, by capturing and filtering runoff through our permeable system right within the urban landscape. 

As we begin our water quality and filtration testing of our permeable concrete, we’ll keep you close to these developments! 

CEO Greg Johnson and product engineer Josh Chastek talk about progress made on the tech front of AquiPor. They also talk about how our concrete tech acts as a filter, and what that means for cities that implement it.
Did you know that AquiPor is taking investments to increase production and grow?
Check out what we’re doing at StartEngine.com/Aquipor

AquiPor Community,

Did you see the recent investigative article in the New York Times regarding groundwater depletion in the U.S.?

Aquifers supply 90% of our nation’s water supply, but they are being over-pumped to levels that could cause irreversible damage to the U.S. economy and society as a whole - emanating in lower crop yields, poor drinking water quality, and shunted land development (housing).

A quiet contributor to this problem that doesn’t get enough attention is the amount of impervious surface area that covers our cities. With 40-60% of the urban landscape covered by impervious surfaces (streets, sidewalks, parking lots, etc.), rainwater that should be naturally re-entering the ground never gets the chance. Instead it becomes runoff that contributes to urban flooding.



These very issues are at the forefront of AquiPor’s mission to develop the permeable concrete technologies and engineering systems to help manage stormwater and recharge groundwater right within the built environment. 

With a commitment by cities to introduce more permeable surfaces and upgrade existing stormwater systems with green infrastructure, we can start to reverse these trends.

Can your community benefit from AquiPor? We’d love to hear from you.

Find out more about AquiPor and learn how you can invest in this technology from the ground up! 

At AquiPor, we believe that climate change is mostly a water issue. One of the most significant impacts of a warming atmosphere is the effect that it’s having on precipitation. The amount of water that a region gets and when it gets that water has become more and more unpredictable. This can mean too much water (flooding) in some regions, and not nearly enough (drought) in others. And even in drought-stricken areas, when precipitation does come, it can be volatile and sudden

Extreme rain events, outdated infrastructure, and the vast amount of impervious surfaces in our cities all factor into the alarming levels of runoff pollution and urban flooding that communities now have to contend with. 

 

At AquiPor, we’ve developed our permeable concrete technology to take the place of traditional paved surfaces to help manage stormwater, reduce pollution from runoff, and help mitigate flooding in cities and towns alike. Here are five ways that AquiPor can help make our communities more resilient to climate change:

 

  1. AquiPor’s permeable concrete manages stormwater right where it falls by allowing rain to flow through the material and naturally soak back into the ground. Instead of relying on inadequate gray infrastructure (underground pipes, tanks, and conveyance systems), which gets overwhelmed in big rain events, AquiPor captures and filters stormwater where it falls, getting precious rainfall back into the ground naturally. This is especially important for regions experiencing historic drought such as in California, where record amounts of precipitation were wasted due to inadequate infrastructure. 

 

2. AquiPor makes it easier for cities to deal with water pollution. It’s estimated that over 10 TRILLION GALLONS of untreated stormwater, wastewater, and sewage gets discharged into clean water bodies every year. This is due to the vast amount of impervious concrete and asphalt surfaces in cities, the amount of runoff these surfaces generate, and the outdated nature of gray infrastructure systems that are ill-equipped to deal with large volumes of runoff.

When it rains, stormwater that should naturally soak into soils and recharge groundwater instead becomes polluted runoff as soon as it hits the pavement. Much of this polluted runoff ends up in nearby water bodies.

 

By replacing traditional pavements with AquiPor’s permeable concrete, stormwater can now flow through the concrete and back into the ground. Due to the tiny pore size of AquiPor concrete, it can even filter out the majority of dirt, debris, and pollutants found in stormwater.

3. AquiPor’s product has an inherently low CO2 footprint. Cement and concrete production is responsible for 8% of the world’s CO2 emissions each year. In addition to AquiPor’s ability to manage stormwater and mitigate flooding, our concrete is produced in an entirely new way and does not use normal cement in the process. Instead, we use a combination of industrial minerals and without the need for cement plants, our process has an extremely low CO2 footprint when compared to normal concrete.

4. AquiPor uses recycled materials. Instead of relying on pollutive cements and additives, our concrete uses a proprietary mix of industrial minerals and “leftovers” from other industries. 

5. AquiPor’s concrete is precast, making it easy and efficient to install. Precast concrete has a myriad of advantages, including uniformity, saving time, and improved quality control. Precast concrete is manufactured offsite in a covered environment which means it isn’t weather dependent, and it enables just in time delivery for jobs. It also allows for a cleaner, safer construction site. 

 

These are just a few of the ways that AquiPor’s permeable concrete technology can make communities more resilient in the face of climate change. Where can this technology make the biggest impact in your community?

On this Water Drop episode, Kevin and Greg talk about the recent weather whiplash phenomenon in California where the state received over 30 Trillion gallons of rain, and how proper planning and development can help cities utilize this stormwater to bolster freshwater resources.

LISTEN ON:

Fly-ash is a hazardous environmental byproduct from coal-fired electric power generation and industrial boilers.

For decades, utilities have disposed of coal ash dangerously, dumping it in unlined ponds and landfills where the toxins leak into groundwater. Some estimates state there are over 3 billion tons of legacy and “fresh” fly-ash waste in the U.S. alone. Many landfills and collection ponds are near large cities.

According to industry’s own data, 94% of the coal ash ponds in the United States are unlined. Unlined ponds are contaminating groundwater with toxins above levels that the U.S. Environmental Protection Agency deems safe for drinking water.

Legal and technical experts from Earthjustice, the Environmental Integrity Project, and partner organizations located and analyzed the data disclosures from utilities that report groundwater monitoring data and found that 91% of these plants are contaminating groundwater with toxic substances at levels exceeding federal safe standards.

AquiPor’s permeable concrete can be used to sequester various harmful industrial waste by combining these materials with our catalytic binder. One such waste material we have been successfully testing in our mix designs is fly ash.

There are environmental and economic advantages to recycling this waste back into our concrete, but in addition to that, it creates some emerging properties that are very compelling for our permeable technology.

How about that...taking care of industrial waste that is contaminating groundwater and putting it into new, useful permeable material that can help improve groundwater and freshwater in our cities?!

If you’ve been following AquiPor for even a short amount of time, you know that we are developing a new type of permeable concrete that would help alleviate stormwater pollution in cities, and we’re really excited about that.  It’s not every day you invent a technology that could not only make life better for people in cities but can also directly help make our communities more resilient to the impacts of climate change.

 

In short, our permeable concrete can help ease the pressure on already overused sewage systems and reduce pollution in the environment by providing a better way to handle rainwater and snow runoff. Instead of allowing polluted stormwater to run off of paved surfaces and into storm drains, our permeable pavers will allow this water to flow down through the material and into subsurface layers before naturally recharging groundwater.

 

There are many applications for our permeable concrete, and we thought it would be fun to share some ideas we have that you might not have thought of. Here are 5 possible applications of our permeable concrete: 

 

1. Swimming pools:  Not the actual swimming pools, that would be kind of silly to have porous material in your pool, but imagine that you have permeable pavers surrounding the pool. Excess water gets drained from around the pool, making it a safer place for your kids. Now, instead of yelling at your kids to “stop running around the pool!”, you can yell “kids, run and get me another beer!”.  Honestly though, having less water around makes it less slick and therefore a lot safer for those you love. Just imagine! 

 

2. Parking lots: You may not even notice it, but those random grassy swales in retail and commercial parking lots are actually there to deal with stormwater runoff. Instead of bulky, space consuming swales or stormwater ponds, AquiPor permeable pavers can take their place to manage stormwater without taking up all that usable space! Btw, did you know that 5.5% of all developed land in the U.S. is made up of impervious parking lots?!  This is a problem we know can be reversed!

 

3. Sidewalk Panels: There are millions of miles of sidewalks throughout the U.S. and almost all of them are impermeable. What better way to manage stormwater from the street than to direct it to permeable sidewalks and manage it right there?! Now of course, these systems need to be designed and engineered to be structurally sound and to prevent road settling but we’ve considered that too. Our “steady-state”, porous detention tanks go underneath our permeable sidewalk panels and regulate how fast stormwater goes back into the ground based on the natural hydrology of those soils. As part of a fully engineered design, we can literally turn neighborhoods into stormwater infiltration corridors. Neat huh? 

 

4. Bike lanes and walking paths: As more and more cities embrace micro-mobility and pedestrian friendly neighborhoods, why not turn the designated bike lanes and pathways in cities into permeable surfaces? Any opportunity to transform impervious pavement into permeable surfaces not only helps with stormwater and flooding issues, but it’s also known that permeable paving can help eliminate urban heat island. Pedestrian friendly + stormwater management + elimination of urban heat island = WIN WIN WIN! 

 

5. Driveways and residential patios: Using permeable pavers in a residential driveway and / or patio can help alleviate all manner of groundwater and stormwater runoff issues, while also safeguarding local water quality by protecting against the infiltration of pollutants. In cold climates, electric or hydronic heating systems in conjunction with a well-designed permeable paver system can not only eliminate snow and ice, but it can get that precipitation back into the ground naturally. Of course, these system designs cost more but it goes to show you what’s possible with permeable concrete pavers!

 

At AquiPor, we’re hard at work developing our technology to meet the standards necessary for each and every one of these applications. What else haven’t we thought of?! Get in touch with us and let us know!

With climate change ever-present, it’s time to consider the value of stormwater and treat it like the freshwater asset that it is.

Even in the drought-ridden American West, climate change doesn’t necessarily reduce the amount of water an area receives, but it definitely has changed how, when, and in what form it arrives. This means more volatile precipitation, less snowpack, more flooding, higher temperatures, and shorter wet seasons. 

The impact that this is having on our watersheds is alarming. All of the water that we consume comes from a watershed. Watersheds consist of two distinct parts: surface waters - which are streams, rivers, and lakes - and groundwater, which is stored in underground aquifers.

Most areas, at least in the West, rely heavily on groundwater. The need to replenish these underground stores is critical, and every drop of stormwater that becomes runoff instead of seeping back into the ground is a missed opportunity. 

In most U.S. cities, where upward of 40% of the urban landscape is paved over with impervious surfaces, huge volumes of runoff are generated each time it rains. There is an enormous opportunity for cities to adapt to the new normal of climate change by turning impervious surfaces permeable. In this era of flashier rain events, where wet weather events can be extreme, volatile, and quick, cities can become more resilient by prioritizing the use of permeable paving and green infrastructure. Not only can it help mitigate urban flooding and runoff pollution, but it can readily get much needed precipitation back into the ground.